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Abstract

The purpose of this paper is to develop two kinds of controllers: (1) the variable structure control (VSC) and (2) the

fuzzy sliding mode control (FSMC), for the building with an active-tuned-mass damper (ATMD) structural control

system. It is desired that the controlled system remain stable and effective when the building is subjected to from

earthquake excitation. From simulation results, it is found that (1) the VSC and the FSMC methods successfully control

vibrations of the building system under earthquake-induced excitation, (2) the FSMC method is more economical and

practical than the VSC due to the smaller controlling force and associated control energy required.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In the last three decades, controlling devices, passive as well as active, have been developed to suppress
structural vibrations from environmental disturbances. Tuned-mass dampers (TMDs) are widely used to
control vibrations in civil engineering structures that are subjected to earthquake-induced vibrations. To
reduce excessive vibrations, passive mass dampers have been installed [1]. Although, TMDs are effective in
reducing vibrations caused by stationary excitation forces, their performance to suppress seismic response are
relatively limited [2]. The idea of active control for civil engineering structures started to emerge around 1970
[3]. An active-TMD (ATMD) has to be considered when the required resisting force exceeds the capacity of a
passive-tuned-mass damper [2].

The variable structure control (VSC) principle can be adapted for the linear, stable and unstable systems
[4,5]. However, The VSC theory cannot be directly applied to the ATMD control system since the motion
equation of the control system is not of canonical form. In this paper, the control system is first transformed
into a canonical form so that the sliding hyper-plane can be designed, and the VSC is used to control the
ATMD system.

The theory of fuzzy sets established by Zadeh [6] has been extensively researched in various fields of
engineering. For example, the clean water procedure of running water, the subway revolve, the car settle soon,
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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the stock certificate invest and analyze, the medical treatment diagnostician and the control system with
electric power. In control engineering, fuzzy theories were applied to the automatic control in stream
engine by Mamdani [7]. The civil engineering community was also forthcoming in studying the application of
the fuzzy theories and fuzzy controls [8,9]. The sliding mode and fuzzy control have been combined by
Hwang et al. [10] to offer the application of pneumatic servo system in the fuzzy sliding mode control (FSMC)
method.

In this paper, the building system is regarded as a distributed parameter system instead of a discrete lumped
parameter system, which was investigated in the previous studies [11–13]. The dynamic equation of a building
associated with the Active-tuned-mass-damper (ATMD) has been addressed by Wang et al. [14]. In this paper,
the VSC and the FSMC methods are proposed to control vibrations of the building by control force in the
ATMD. Runge–Kutta method is employed to obtain the numerical simulations associated with the
application of the control laws. Finally, numerical results are compared and conclusions are drawn for the
building with the ATMD structure control system. Although, the VSC has been quite extensively researched
for structured control, this paper presented the formulation for converting the state-space representation of a
multi-story building with ATMD at the roof to a canonical form for application of the VSC and the FSMC. It
is found that the VSC and the FSMC methods successfully control vibrations of the building system under the
earthquake, and the FSMC method is more economical and practical than the VSC due to the smaller
controlling force.
2. Formulation of building with TMD

2.1. System description

A schematic drawing of the building with a TMD system is shown in Fig. 1(a). The fixed (OXY) and the
moving coordinate (o0xy) are used to describe the whole system. The building is subjected to the
earthquake motion b(t). The building consists of n floors and has the concentrated mass mi for the ith floor.
The TMD is composed of a concentrated mass MG, a spring with constant k, and an oil-hydraulic system,
which generates force F acting on the building. When the contact surface between two solids is dry, Coulomb
damping can be used to describe the friction force opposing their relative motion and its magnitude is
denoted by mMGg, in which m is the so-called kinetic coefficient of friction. The building is modeled by
Euler–Bernoulli beam theory with length L, mass density r, cross-sectional area A, elastic modules E and
moment of inertia I. The positions of slabs are located at xi ði ¼ 1; 2; . . . ; nÞ. The transverse deflection v(x, t)
measured from the moving coordinate is a function of both spatial coordinate x and time t. In Fig. 1(b), the
equilibrium position x of the mass MG is measured from the nth slab. It is assumed that the distance between
the concentrated mass MG and rooftop is negligible compared to the building height L. The free-body diagram
is shown in Fig. 1(c).

We obtain a set of nonlinear, second-order ordinary differential equations. The dynamic formulation has
been addressed by Wang et al. [14] and detailed in Appendix.

M €Qþ KQþNðQÞ ¼ P, (1)

where M and K are the global mass and stiffness matrices, N(Q) represents the nonlinear term, and P is the
force vector. It should be noted that the force vector P includes the acceleration €b of earthquake, actuating
force F and dry friction force mMGg sgnð_xÞ.

Rayleigh damping is assumed to model the natural damping in the structure:

C ¼ aMþ bK, (2)

where the coefficients a and b are selected to fit the structure under consideration.
Thus, we obtain the equation of motion for the damped system

M €Qþ C _Qþ KQþNðQÞ ¼ P. (3)
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Fig. 1. (a) Schematic drawing of a building with the TMD system, (b) schematic diagram of a tuned-mass damper and (c) free-body

diagram of the mass damper.
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3. Control design

3.1. Variable structure control

The VSC [4,5] is often used to control the nonlinear and time-invariant systems due to its advantages of fast
response, robustness, and good performance. The control design involves the determination of a sliding plane
sðxÞ ¼ 0 in the state space and makes the state trajectories hit and slide on it. The control design is divided into
two stages. The first stage is the hitting condition or reaching mode, which describes the trajectory starting
from initial state toward the sliding plane. In this stage, the hitting condition s � _so0 is satisfied. The second
stage is the sliding condition or sliding mode, in which the trajectory moves to the original of the phase plane.
The characteristic root of sðxÞ ¼ 0 must have negative value, thus the Routh– Hurwitz stability criterion is
satisfied.

Since the actuating force directly acts on the ATMD structural control system, and the distributed building
system has vibrations, the whole system is therefore a class of single-input multi-output (SIMO) system and is



ARTICLE IN PRESS
A.-P. Wang, Y.-H. Lin / Journal of Sound and Vibration 299 (2007) 757–773760
rewritten as

_ZðtÞ ¼ AZðtÞ þ BuðtÞ þWðZ; tÞ,

YðtÞ ¼ CZðtÞ, ð4Þ

where A is a 2n� 2n system matrix, B is a 2n� 1 actuator position matrix, C is an m� 2n output matrix, Z(t) is
a 2n� 1 state variable vector, n ¼ 2Ne þ 1, uðtÞ ¼ F ðtÞ is the control input, Y(t) is an output variable vector,
and W(Z, t) is a disturbance vector and includes the nonlinear term, acceleration of earthquake and dry
friction force. The detailed coefficients can be seen in Appendix.

Let the sliding plane be

sðtÞ ¼ C � EðtÞ ¼ 0, (5)

where EðtÞ is the error state vector, and C ¼ ½c1; c2; . . . ; c2n� is its coefficient. For the purpose of vibration
suppression, we have EðtÞ ¼ �ZðtÞ.

The system (5) is linear, time-invariant but not a canonical controllable plant. The control system must be
transformed to the canonical controllable form in which the VSC can be directly applied. The upper bound of
disturbance vector, W(Z, t), is omitted in the design of controllers, because the upper bound can be assumed a

constant. System (5) is first transformed by Z̄ðtÞ ¼ T1ZðtÞ with T1 being an invertible transformation matrix

and having T1B ¼
O

1

� �
, we have

Z
d
ðtÞ ¼ AZðtÞ þ buðtÞ, (6)

where

A ¼ T1AT
�1
1 ¼

A11 A12

A21 A22

" #
; b ¼ T1B ¼

O

1

� �
; ZðtÞ ¼

Z1ðtÞ

Z2ðtÞ

" #
.

Eq. (6) can be written as

Z1ðtÞ ¼ A11Z1ðtÞ þ A11Z2ðtÞ, (7a)

Z2

�

ðtÞ ¼ A21Z1ðtÞ þ A22Z2ðtÞ þ uðtÞ, (7b)

where , A11; A12; A21; and A22 are the constant matrices, Z1ðtÞ and Z2ðtÞ are the state variable matrices, and
u(t) is the input force function.

The eigenfunction of A11ðtÞ can be expressed as

pðlÞ ¼ l2n�1
þ a2n�1l

n�2
þ � � � þ a2lþ a1 ¼ 0. (8)

The dynamic system represented by Eq. (7) is further transformed by

Z1ðtÞ ¼ T2Z1ðtÞ, (9)

where

T2 ¼ A12 A11A12 . . . A
2n�2

11 A12

h i
a2 a3 . . . a2n�1 1

a3 a4 . . . 1 0

..

. ..
.

c ..
. ..

.

a2n�1 1 0 . . . 0

1 0 0 . . . 0

2
66666664

3
77777775
.

By using transformation (9), Eq. (7a) becomes a controllable canonic form as follows:

Z1

�

ðtÞ ¼ A11Z1ðtÞ þ A12Z2ðtÞ, (10)
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where

A11 ¼ T�12 A11T2 ¼

0 1 . . . 0 0

0 0 . . . 0 0

..

. ..
. ..

. ..
. ..

.

0 0 . . . 0 1

�a1 �a2 . . . �a2n�2 �a2n�1

2
66666664

3
77777775
; A12 ¼ T�12 A12 ¼

0

0

..

.

0

1

2
6666664

3
7777775
.

The state variable Z2ðtÞ is assigned as

Z2ðtÞ ¼ �DaTZ1ðtÞ ¼ �DaTT�12 Z1ðtÞ, (11)

where

DaT ¼ ā1 � a1 ā2 � a2 . . . ā2n�2 � a2n�2 ā2n�1 � a2n�1

� �
,

in which ā1; ā2; . . . ; ā2n�1 depend on the designed poles of the switching function. Substituting Eq. (11) into
Eq. (10),

Z

�

1 ¼ A11 � A12DaT
� �

Z1ðtÞ, (12)

The characteristic equation of the matrix A11 � A12DaT
� �

becomes

l2n�1
þ ā2n�1l

2n�2
þ � � � þ ā2lþ ā1 ¼ 0. (13)

In the above equation, we can assign the stable poles of the system according to the sliding plane:

sðtÞ ¼ ðDþ rÞ2n�1EðtÞ ¼ ðDþ rÞ2n�1ZðtÞ ¼ 0, (14)

where D ¼ d=dt and

ā2n�1 ¼ ð2n� 1Þr;

..

.

ā2 ¼ ð2n� 1Þr2n�2;

ā1 ¼ r2n�1:

If we choose r40, Eq. (13) will satisfy Routh–Hurwitz stability condition. From Eq. (11), the designed
sliding hyperplane is

sðtÞ ¼ �DaTT�12 1
h i

,

Z1ðtÞ

Z2ðtÞ

" #
¼ �DaTT�12 1
h i

,

T1ZðtÞ ¼ CEðtÞ, ð15Þ

where C ¼ �DaTT�12 1
h i

T1. On the sliding hyperplane, one obtains

sðtÞ ¼ C � EðtÞ ¼ 0, (16)

The VSC method needs the measurements of s and _s in the control process. s is measured and obtained from
the dynamic response. Consequently, it can be used to obtain

_sðtÞ ¼
dsðtÞ

dt
¼ lim

Dt!0

sðtþ tsÞ � sðtÞ

ts

, (17)

where ts is the time interval in simulation.
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For the eventual sliding mode-switching scheme, the control is designed to satisfy Lyapunov stability
criteria.

V ¼ sTs40,

_V ¼
d

dt
ðsTsÞ ¼ 2sT _s ¼ 2sT

qs

qZ
ðAZ þ BuÞo0, ð18Þ

Here, the VSC for the control function u(t) takes the form of relay. The relay gain maybe either fixed or
state dependent [4]. The control function is

uðtÞ ¼
uþ; if s40;

u�; if so0;

(
(19)

where the values u+ and u� are chosen to satisfy the reaching condition. For example, we can selected u+ ¼ K

and u� ¼ �K, where K depends on the upper bounded of the disturbances, W(Z, t).
3.2. Fuzzy sliding mode control

The FSMC method is one of the control methods combining the fuzzy theory with sliding mode control
method. It has a two-fold advantage: the fuzzy control handles the nonlinear control systems, and the sliding
mode control offers a fast and stable control system. The FSMC diagram is shown in Fig. 2. It can be seen that
the system includes two parts, one is the controller and structure, the other is the fuzzy sliding mode controller,
which contains the observation, sliding plane and fuzzy controller.

Applying the traditional fuzzy Mamdani method [7] to the non-canonical control form (4) causes an
improper control force and increases instability of the building system. In this paper, we first transfer the
system to a canonical form the same as the VSC, then define the sliding plane sðtÞ ¼ 0 and establish the
switching function s of Eq. (15) and _s of Eq. (17) to construct the FSMC method. First, we normalize s and _s
to S and _S by S ¼ GS � s and _S ¼ GCS � _s, where GS and GCS are determined by experience. Then, we change
S and _S to fuzzy variables, and take advantage of fuzzy control theory to design the control function U.

In this paper, the S; _S and U are divided into 13 ranks of �1; �5=6; �4=6; �3=6; �2=6; �1=6; 0;
�

1=6; 2=6; 3=6; 4=6; 5=6; 1g, seven fuzzy variables are defined as Positive Big [PB], Positive Medium [PM],
Positive Small [PS], Zero [ZO], Negative Small [NS], Negative Medium [NM], and Negative Big [NB], and as
shown in Fig. 3. The linguistic rules of S and _S are set up in Table 1. In order to set up the look-up table, for
two example rules to explain:

Rule 1: If S is PB and _S is PB, then U is PB. Its means while S and _S are Positive Big, the trajectory is far
away from sliding plane, so we must use the Positive Big control force to make the system as soon as approach
to sliding plane.
Sliding Plane Fuzzy Controller

Fuzzy Sliding Mode ControllerInput

Output Feedback

Output

SystemControllerObservation

Fig. 2. Block diagram of fuzzy sliding mode control.
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1.0

0.0

NB NS ZO PS PBNM PM

-6 -4 -2 0 2 4 6

S,S,U
.

Fig. 3. The triangle membership functions of S, _S and U.

Table 1

Linguistic rules of S and _S

_S

NB NM NS ZO PS PM PB

S NB NB NM NS ZO

NM NM NS ZO

NS NM NS ZO PS

ZO NS ZO PS

PS NS ZO PS PM

PM ZO PS PM

PB ZO PS PM PB

Table 2

The look-up table

Look-up table U _S

NB NM NS ZO PS PM PB

S NB �1.0 �0.8 �0.6 �0.4 �0.2 �0.1 0

NM �0.8 �0.6 �0.4 �0.2 �0.1 0 0.1

NS �0.6 �0.4 �0.2 �0.1 0 0.1 0.2

ZO �0.4 �0.2 �0.1 0 0.1 0.2 0.4

PS �0.2 �0.1 0 0.1 0.2 0.4 0.6

PM �0.1 0 0.1 0.2 0.4 0.6 0.8

PB 0 0.1 0.2 0.4 0.6 0.8 1.0

A.-P. Wang, Y.-H. Lin / Journal of Sound and Vibration 299 (2007) 757–773 763
Rule 2: If S is PS and _S is NS, then U is ZO. Its means while S is Positive Small and _S is Negative Small, the
trajectory is already in close to sliding plane and the reaching condition S � _So0 is satisfied. It does not add
the control force.

After setting up fuzzy linguistic control law and according to Mamdani inference method, we obtain the
look-up Table as shown in Table 2. The values in Table 2 can be plotted as a control surface as shown in
Fig. 4, in which U is a function of S and _S. The volume under a control surface is proportional to the amount
of energy expended by the controller. Finally, the control force u of the system can be computed by
u ¼ GU �U , where GU is a constant which depends on the upper bound of W(Z, t).
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Fig. 4. Control surface for the FSMC.
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4. Numerical results and discussion

4.1. The building model

Considering the building model is a distributed parameter beam system, one has the first-mode natural
frequency [14]

o ¼ b2
ffiffiffiffiffiffiffi
EI

rA

s
. (20)

In order to save the computational time, a three-slab RC building is selected as the example with the
following parameters: total length L ¼ 9m, Young’s modulus E ¼ 2:1324� 102 N=m2, cross-sectional area
0.075m2, mass density 7840 kg=m3, mass of each slab is 777 kg, spring stiffness of ATMD is 6875:18N=m,
mass of ATMD is 125:94 kg, and the dry friction coefficient is 0.05. The dynamic responses of the system are
solved by the Runge– Kutta method with the desired accuracy 10�6. The initial shape is taken as the first mode
shape [17] of free vibrations of a cantilever beam

vðx; 0Þ ¼ C1 sin b1x� sinh b1x� a1ðcos b1x� cosh b1xÞ
� �

, (21)

where

a1 ¼
sin b1l þ sinh b1l

cos b1l þ cosh b1l

	 

; b1l ¼ 1:875104.

4.2. Numerical results and discussion

In numerical simulations, the performances of two control methods are compared with different initial
conditions and the El Centro (1940), Kobe (1995) excitation earthquake.

In this study, the ratios of dynamic responses in the controlled and uncontrolled systems are used to judge
the reduction of system responses. The RðXmaxÞ and Rð _XmaxÞ are the ratios of maximum displacement and
velocity of the controlled and uncontrolled systems, and are defined as, respectively,

RðXmaxÞ ¼ ðXmaxÞcontrolled=ðXmaxÞuncontrolled, (24a)

Rð _XmaxÞ ¼ ð _XmaxÞcontrolled=ð _XmaxÞuncontrolled, (24b)
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The RðX aveÞ and Rð _X aveÞ are the ratios for the average displacement and velocity of the controlled and
uncontrolled systems during time interval T, and are defined as, respectively,

RðX aveÞ ¼ ðX aveÞcontrolled=ðX aveÞuncontrolled,

Rð _X aveÞ ¼ ð _X aveÞcontrolled=ð _X aveÞuncontrolled.

Fig. 5 shows the responses of the building system with an initial condition C1 ¼ 0:0667 in Eq. (21). The dash
lines are used for the vibrations under external disturbance while the solid line represents the VSC system.
Fig. 5(a, b) shows the displacement of top floor and TMD, respectively. Fig. 5(c) is the time history of
control force, and Fig. 5(d) shows the decay of the work done by the control force and the settling time of the
control response is about 3–4 s. Fig. 6 shows the displacements of the building subjected to the El Centro
and Kobe earthquakes are controlled through the TMD. The responses of the TMD under the VSC control
and without control are shown in Fig. 6(a) and (c), subjected to the El Centro and Kobe earthquakes,
respectively. It shows that the VSC will greatly reduce the system response in comparison without control.
Fig. 6(b) and (d) show the decay of the work done by the control force and the settling time of the control
response is about 40 and 12 s subjected to the El Centro and Kobe earthquakes, respectively. The responses of
the FSMC system are illustrated in Figs. 7 and 8. In the FSMC system, the membership function, language
and the look-up table are calculated off line, but the observation and control force u(t) are operated on
line. Under the same initial condition as shown in Fig. 7, it is noticed that the FSMC has similar effect with the
VSC, but the energy of control force is smaller than that of the VSC, because the control force of the VSC is
similar to Bang-Bang control. Under the earthquakes of El Centro and Kobe excitation as shown in Fig. 8,
the FSMC successfully suppresses the responses as same as the VSC, but the control energy is less than that of
the VSC.

Comparisons of simulated responses of the VSC and the FSMC under the El Centro earthquake are shown
in Table 3. It is found:
1.
Ta

Co

El

Un

VS

X

X

FS

X

X

Comparing the maximum displacements of the top floor for the VSC and the FSMC with that of the
uncontrolled system, it can be obtained RðXmaxÞ ¼ 0:39; and RðXmaxÞ ¼ 0:167, respectively. It is the
reducible degrees of displacements are 61% and 83%, respectively. It is shown that the VSC and the FSMC
control methods are all effective in reducing the displacements of the building structure.
2.
 Comparing the peak velocities of the top floor for the VSC and the FSMC with that of the uncontrolled
system, the reducible degrees of velocity are 15% and 83%, respectively. It is shown that the FSMC
control methods are more effective than that of the VSC in reducing the velocity of the building
structure.
3.
 The root-mean-square (rms) of control energy of the FSMC is smaller than that of the VSC. The work done
by the FSMC control force is smaller.
ble 3

mparing performances for the VSC and the FSMC

centro earthquake Xmax (m) _Xmax (m/s) Xave (m) _X ave (m/s) RðXmaxÞ Rð _XmaxÞ RðX aveÞ Rð _X aveÞ Uave (N)

control 0.049 0.261 0.012 0.062

C

S 0.019 0.222 0.002 0.056 0.390 0.851 0.209 0.901 1500

T 0.103 0.727 0.007 0.181

MC

S 0.017 0.133 0.002 0.011 0.167 0.170 0.351 0.510 315.16

T 0.101 0.505 0.008 0.034
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5. Conclusions

In this paper, the VSC and the FSMC algorithms for structural building with TMD system has been
developed. In the numerical simulations using the El Centro earthquake, it is shown that proposed control
methods are all effective in reducing the responses of displacement and velocity of the building structure. The
FSMC control methods are more effective than that of the VSC in reducing the velocity of the building
structure. It is also found that the FSMC method has the smaller rms of control force than that of the VSC
method. The performance of the FSMC is better than the SMC.
Appendix A

A.1. Kinetic and strain energies

The total kinetic energy of the whole system is

Tm ¼
1

2
MG½

_bþ _vðL; tÞ þ _x�2 þ
1

2
rA

Z L

0

ð_vþ _bÞ2 dxþ
1

2

Xn

i¼1

mi½_vðxi; tÞ þ _b�2, (A.1)

where the first term is kinetic energy of the TMD, the second term is for the building being modeled by the
beam theory, and the last one is for the floors.

Assuming that the beam is inextensible, the axial tension due to gravity is

GðxÞ ¼ g
Xn

i¼1

miHðxi � xÞ þ rAðL� xÞ þMG

" #
, (A.2)

where H is the unit step function. The strain energy of the beam can be written as

Um ¼
1

2

Z L

0

GðxÞv2x þ EIv2xx þ
1

4
EAv4x

� �
dx, (A.3)

where the geometric nonlinearity is considered.
A.2. Virtual work

From the free-body diagram shown in Fig. 1(c), the virtual work done by the applied forces acting on the
TMD may be written in terms of its virtual displacement dx as

dW ¼ ½F � kx� mMGg sgnð_xÞ�dx. (A.4)

A.3. Finite element discretization

By using the finite element method, the continuous displacements may be approximated in terms of the
discretized nodal displacement [15,16]. In this paper, the beam is divided into n elements and each node has
two degrees-of-freedom. The usual approach in the finite element method is that each unknown deformation
vðx; tÞ is approximated by a finite series in the following form:

vðx; tÞ ¼
Xn

i¼1

HiðxÞqiðtÞ, (A.5)

where HiðxÞ is the Hermite shape function [15] and qiðtÞ represents the nodal displacement.
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A.4. The governing equation

By using Hamilton’s principle Z t2

t1

XNe

j¼1

dLj dtþ dW ¼ 0, (A.6)

we obtain a set of nonlinear, second-order ordinary differential equations

M €Qþ KQþNðQÞ ¼ P, (A.7)

where M and K are the global mass and stiffness matrices, N(Q) represents the nonlinear term, and P is the
force vector. The dynamic formulation can be seen in the Appendix. It should be noted that the force vector P
includes the acceleration €b of earthquake, actuating force F and dry friction force mMGg sgnð_xÞ.

To compensate for the dissipation mechanisms, it is customary to use the most popular hypotheses known
as the Rayleigh damping:

C ¼ aMþ bK, (A.8)

where the coefficients a and b are selected to fit the structure under consideration.
Finally, we obtain the equation of motion for the damped system

M €Qþ C _Qþ KQþNðQÞ ¼ P. (A.9)

A.5. Hamilon’s principle

For each element, the displacements at each nodal point are assumed to be composed of the transverse
deformation v and its slope vx. The Hermite shape function [16,17] is defined to satisfy continuity requirements
of the displacement nodal value and slope. Each of the shape functions is of cubic polynomial and is
represented by

Hi ¼ ai þ biZþ ciZ2 þ diZ3; �1pZp1; i ¼ 1; 2; 3; 4. (A.10)

When all conditions are satisfied, the coefficients, ai; bi; ci; di, can be easily obtained.
By using Eqs. (A.5) and (A.10), the kinetic and strain energies for an element associated with the TMD can

be obtained, respectively, as

Tj ¼
1

2

Z xjþ1

xj

frAðH_qþ _bÞTðH_qþ _bÞ þmjðHj _qþ _bÞTðHj _qþ _bÞ þMGðHL _qþ _bþ _xÞTðHL _qþ _bþ _xÞgdx,

Uj ¼
1

2

Z xjþ1

xj

fGðxÞðBqÞTðBqÞ þ EIðDqÞTðDqÞ þ
1

4
EAðBqÞTðBqÞðBqÞT ðBqÞgdx�

1

2
kx2, ðA:11Þ

where B ¼ ðd=dxÞH, D ¼ ðd2=dx2ÞH, and HL represents the H at x ¼ ‘.
After some manipulations in Hamilton’s principle (A.6), we can obtain the motion Eq. (A.9) with the

following matrices:

Q ¼ q1 . . . qi . . . q2Ne
x

h iT
,

M ¼

0

..

.

M� MG

0

0 . . . MG 0 MG

2
6666666664

3
7777777775
ð2Neþ1Þ�ð2Neþ1Þ

,
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K ¼

0

..

.

K� �k

0

0 . . . 0 0 k

2
666666664

3
777777775
ð2Neþ1Þ�ð2Neþ1Þ

,

P ¼

rA €bþm €b

rA €b

rA €bþm €b

..

.

rA €bþm €bþMG
€b

rA €b

MG
€b� F þ mMGsgnð_xÞ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
ð2Neþ1Þ�1

; NðQÞ ¼
1

2
EABTBqqTBTB, ðA:12Þ

M� ¼
XNe

j¼1

ðrANTNþmjN
T
j NjÞ ¼

M11 O

M22

. .
.

M ðn�2Þðn�2Þ

O M ðn�1Þðn�1Þ

2
6666666664

3
7777777775
.

K� ¼
XNe

j¼1

½GðxÞBTBþ EIDTD�.

A.6. The coefficients of the state-space equation

The coefficients of the state-space Eq. (A.4) are

Z ¼
Q

_Q

" #
; A ¼

On In

�M�1K �M�1C

" #
; B ¼

O2n�3

K1K
�1
2

0

�K�12

2
666664

3
777775,

W ¼
On

W1ð
€b; tÞ

" #
þ

On

W2ð
_x; tÞ

" #
þ

On

W3ðQ; tÞ

" #
, ðA:13Þ

in which

K1 ¼M�1ðn�2Þðn�2ÞMG; K2 ¼MGð1� K1Þ,



ARTICLE IN PRESS
A.-P. Wang, Y.-H. Lin / Journal of Sound and Vibration 299 (2007) 757–773 773
W1ð
€b; tÞ ¼M�1

rA €bþm €b

rA €b

rA €bþm €b

..

.

rA €bþm €bþMG
€b

rA €b

MG
€b

2
66666666666666664

3
77777777777777775

; W 2ð
_x; tÞ ¼

On�1

mMGg sgnð_xÞ

" #
,

W3ðQ; tÞ ¼ �M
�1NðQÞ. ðA:14Þ

On is a zero matrix (n� n) and In is an identity matrix (n� n). In Eq. (A.5), W1ð
€b; tÞ is used for the

earthquake excitation, W2ð
_x; tÞ represents the dry friction forces, and W3ðQ; tÞ is the nonlinear term.
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